A Monotonicity Formula on Complete Kähler Manifolds with Nonnegative Bisectional Curvature

نویسنده

  • LEI NI
چکیده

In [Y], Yau proposed to study the uniformization of complete Kähler manifolds with nonnegative curvature. In particular, one wishes to determine whether or not a complete Kähler manifold M with positive bisectional curvature is biholomorphic to C. See also [GW], [Si]. For this sake, it was further asked in [Y] whether or not the ring of the holomorphic functions with polynomial growth, which we denote by OP (M), is finitely generated, and whether or not the dimension of the spaces of holomorphic functions of polynomial growth is bounded from above by the dimension of the corresponding spaces of polynomials on C. This paper addresses the latter questions. We denote by Od(M) the space of holomorphic functions of polynomial growth with degree d. (See Section 3 for the precise definition.) Then OP (M) = ⋃ d≥0Od(M). In this paper, we show that Theorem 0.1. Let M be a complete Kähler manifold with nonnegative holomorphic bisectional curvature. Assume that M is of maximum volume growth. Then

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Complex Structure of Kähler Manifolds with Nonnegative Curvature

We study the asymptotic behavior of the Kähler-Ricci flow on Kähler manifolds of nonnegative holomorphic bisectional curvature. Using these results we prove that a complete noncompact Kähler manifold with nonnegative bounded holomorphic bisectional curvature and maximal volume growth is biholomorphic to complex Euclidean space C . We also show that the volume growth condition can be removed if ...

متن کامل

Ancient Solutions to Kähler-ricci Flow

In this paper, we prove that any non-flat ancient solution to KählerRicci flow with bounded nonnegative bisectional curvature has asymptotic volume ratio zero. We also classify all complete gradient shrinking solitons with nonnegative bisectional curvature. Both results generalize the corresponding earlier results of Perelman in [P1] and [P2]. The results then are applied to study the geometry ...

متن کامل

On dimension reduction in the Kähler-Ricci flow

We consider dimension reduction for solutions of the Kähler-Ricci flow with nonegative bisectional curvature. When the complex dimension n = 2, we prove an optimal dimension reduction theorem for complete translating KählerRicci solitons with nonnegative bisectional curvature. We also prove a general dimension reduction theorem for complete ancient solutions of the Kähler-Ricci flow with nonneg...

متن کامل

Plurisubharmonic Functions and the Structure of Complete Kähler Manifolds with Nonnegative Curvature

In this paper, we study global properties of continuous plurisubharmonic functions on complete noncompact Kähler manifolds with nonnegative bisectional curvature and their applications to the structure of such manifolds. We prove that continuous plurisubharmonic functions with reasonable growth rate on such manifolds can be approximated by smooth plurisubharmonic functions through the heat flow...

متن کامل

Poisson Equation, Poincaré-lelong Equation and Curvature Decay on Complete Kähler Manifolds

In the first part of this work, the Poisson equation on complete noncompact manifolds with nonnegative Ricci curvature is studied. Sufficient and necessary conditions for the existence of solutions with certain growth rates are obtained. Sharp estimates on the solutions are also derived. In the second part, these results are applied to the study of curvature decay on complete Kähler manifolds. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004